מעברי פאזה בקרומי סבון

קרומי סבון נוטים להסתדר בצורה כזאת שאנרגית פני השטח של הקרום מינימלית. קרומי סבון יכולים "לפתור" באופן פיזי בעיות מתמטיות הכרוכות במינימיזציה.

דוגמאות:

·         בעיה של דידו: מצא צורה בעלת שטח מקסימלי עבור אורך היקף נתון ("הבעיה האיזופרימטרית").

·         בעית שטיינר: נתונות 3 נקודות A,B,C במישור. איך למצוא נקודה רביעית P כך שסכום המרחקים מ-P לשאר הנקודות יהיה קטן ביותר.

·         בעיית הברכיסטוכרון: בהינתן נקודות a ו-b, כאשר a איננה מתחת ל-b, יש למצוא את צורתו של התיל שחרוז המחליק לארכו יגיע מ-a ל-b בזמן הקצר ביותר, כאשר תנועת החרוז מושפעת מכח כבידה קבוע בלבד.

בפתרונות לבעיות מינימיזציה בהרבה מקרים נוצרות נקודות מינימום ומקסימום. מבחינה פיזיקלית נקודות אלה מתאימות למצבי שווי משקל. מעבר מנקודת שיווי משקל אחת לשניה נקרא מעבר פאזה.

תופעות של מעבר פאזה קיימות גם בקרומי סבון, כאשר הצורה של קרום משתנה בצורה פתאומית.

מטרות העבודה

להבין את מנגנון מעברי הפאזה בקרומי סבון ולבחון דמיון שלהם למעברי פאזה במערכות אחרות.

שאלות מחקר

1.      מה הקשר בין צורת הסידור של משטח קרום הסבון לבין אנרגית פני השטח של הקרום?

2.      למה הקרום במכשיר "בוחר" להסתדר דווקא בצורות סידור מסויימות?

3.      מה מאפיין את מעברי הפאזה במכשיר כולל נקודת המעבר (נקודה קריטית)?

4.      כיצד ניתן לתאר את מעבר הפאזה באמצעות מודל מתימטי?

5.       האם קיימת אנלוגיה בין התנהגות של קרומי סבון לשינויים במגנטיזציה של מתכות? בשתי התופעות המערכת מחפשת מצב בעל אנרגיה מינימלית בתנאים נתונים. השאלה היא כמה התופעות דומות.    

יולי 2024
יום ראשון יום שני יום שלישי יום רביעי יום חמישי יום שישי שבת
30 ביוני 2024 1 ביולי 2024 2 ביולי 2024 3 ביולי 2024 4 ביולי 2024 5 ביולי 2024 6 ביולי 2024
7 ביולי 2024 8 ביולי 2024 9 ביולי 2024 10 ביולי 2024 11 ביולי 2024 12 ביולי 2024 13 ביולי 2024
14 ביולי 2024 15 ביולי 2024 16 ביולי 2024 17 ביולי 2024 18 ביולי 2024 19 ביולי 2024 20 ביולי 2024
21 ביולי 2024 22 ביולי 2024 23 ביולי 2024 24 ביולי 2024 25 ביולי 2024 26 ביולי 2024 27 ביולי 2024
28 ביולי 2024 29 ביולי 2024 30 ביולי 2024 31 ביולי 2024 1 באוגוסט 2024 2 באוגוסט 2024 3 באוגוסט 2024